Loading...
مشاوره، طراحی، ساخت و نظارت اتاق تمیز و نوسازی و بازسازی، نگهداری و تعمیرات، بهینه سازی کارخانجات (دارویی، ملزومات دارویی، تجهیزات پزشکی، آرایشی و بهداشتی، ضدعفونی کننده ها، شوینده ها، مواد غذایی و صنعتی)

آشنایی با پیل سوختی، انواع و اجزای آن

آشنایی با پیل سوختی، انواع و اجزای آن

آشنایی با پیل سوختی

 پیل سوختی جهت تولید انرژی با راندمان بهینه ، نیازمند تجهیزات جانبی بنام سیستم پیل سوختی است که شرایط بهینه عملکرد برای پیل سوختی ، شامل خلوص سوخت ، مقدار هوا و سوخت ورودی به پیل سوختی ، رطوبت گازها و مدیریت آب ، کنترل دما و نهایتا فشار گازها در سیستم و پیل سوختی را کنترل نمایند. یک سیستم پیل سوختی را می‌توان به سه قسمت عمده شامل بخش سوخت رسانی (مبدل سوخت و سیستم ذخیره هیدروژن) ، بخش تولید انرژی شامل سری پیل سوختی و سیستم کنترل رطوبت ، فشار ، دما و دبی گازها و نهایتا بخش تبدیل انرژی که مربوط به فصل مشترک بین پیل سوختی و مصرف کننده برق جهت تبدیل جریان و ولتاژ برق به ولتاژ و جریان مناسب می‌باشد، تقسیم نمود. متناسب با نوع پیل سوختی و کاربرد آن ، این سیستمها ساده و یا پیچیده می‌باشند، به عنوان نمونه در پیلهای سوختی نیروگاهی ، بخش مبدل سوخت که سوختهای فسیلی ، بیومس و یا ... را تبدیل به هیدروژن خالص می‌نماید، بخش پیچیده و اصلی سیستم سوخت رسانی را تشکیل می‌دهد. در مصارف خودرویی سیستم سوخت رسانی بنا به نوع زیر ساخت سوخت موجود می‌تواند دو شکل زیر را به خود بگیرد:

  1. تولید هیدروژن در خودرو با استفاده از مبدل سوخت
  2. تولید هیدروژن در خارج از خودرو و ذخیره هیدروژن در خودرو

    در صورتی که هیدروژن در جایگاه سوخت گیری تولید شود، سیستم ذخیره سوخت خودرو می‌تواند روشهای مختلفی از قبیل ذخیره هیدروژن در مخازن تحت فشار ، بکار گیری نانوتیوبها ، بکارگیری جاذبهای هیدرید فلزی ، بکارگیری هیدریدهای شیمیایی و ... را شامل شود. در صورت تولید هیدروژن در خودرو ، مبدل سوخت (بالاخص مبدل بنزین و متانول) قابل نصب بر روی خودرو بخش اصلی و پیچیده سیستم سوخت در خودرو را شامل می‌گردد.

بخش سوخت رسانی

بخش سوخت رسانی در مولدهای نیرو گاهی پیل سوختی خود از قسمت های مختلفی از جمله راکتور مبدل سوخت، سیستم هوادهی، کمپرسور، مخازن تحت فشار و ... تشکیل شده است. راکتور مبدل سوخت که جزء اصلی در بخش سوخت رسانی نیرو گاهی می باشد، سوخت های هیدرو کربنی موجود را به گاز غنی از هیدروژن که خوراک پیل سوختی است تبدیل می کند. مبدل سوخت در سیستم پیل سوختی خودروها، سیستم را کمی پیچیده می کند اما دارای این مزیت است که از سوخت هایی استفاده می کند که در زیر ساخت ها و شبکه های توزیع فعلی وجود دارند. همانگونه که اشاره شد، هنگامی که سوخت هیدروژن خالص در خارج از خودرو تولید و در خودروها بار گیری شود، سیستم پیل سوختی بسیار ساده تر خواهد گردید.

مبدل سوخت

دانسیته کم انرژی هیدروژن در حالت گاز، کاربرد هیدروژن را به عنوان حامل انرژی با مشکل روبرو می سازد. بدین معنی که نسبت به سوختهای مایع همچون بنزین یا متانول از انرژی کمی به ازای هر واحد حجم برخوردار است. بنابراین بارگیری هیدروژن گازی (تحت فشار متوسط و پایین) به مقداری که برد حرکتی قابل قبولی را برای خودروی پیل سوختی تأمین نماید، کاری مشکل به نظر می‌رسد. هیدروژن مایع از دانسیته انرژی خوبی برخوردار است (حدود 120.7 کیلو ژ ول به ازاء هر کیلوگرم) اما باید در دمای بسیار پایین ( 253 درجه سانتیگراد زیر صفر ) و فشارهای بالا ذخیره شود که این مسئله ، ذخیره سازی و حمل و نقل آن را مشکل می‌سازد. سوختهای متداول همچون گاز طبیعی ، پروپان و بنزین و سوختهایی مانند متانول و اتانول ، همگی در ساختار مولکولی خود هیدروژن دارند. با بکارگیری مبدل نصب شده بر روی خودرو (onboard) یا مبدلهایی که در محلهای سوخت گیری نصب می‌شوند، می‌توان هیدروژن موجود در این سوختها را جدا کرده و به عنوان سوخت در پیل سوختی مورد استفاده قرار داد. بدین ترتیب مشکل ذخیره سازی هیدروژن و توزیع آن تقریبا بطور کامل رفع می‌شود. کار مبدل سوخت فراهم آوردن هیدروژن مورد نیاز پیل سوختی با استفاده از سوختهایی است که در دسترس بوده و حمل و نقل آن آسان می‌باشد. مبدلهای سوخت باید توانایی انجام این کار را با حداقل آلودگی و بالاترین راندمان داشته باشند. عملکرد مبدلهای سوخت به زبان ساده عبارت است از اینکه یک سوخت سرشار از هیدروژن را به هیدروژن و محصولات فرعی دیگر تبدیل نماید. یکی از مشکلات مهم در زمینه ساخت مبدلها اندازه و وزن مبدل می‌باشد. برای ارتقاء سطح بازده ، لازم است وزن و حجم مبدلها به ازای هر واحد انرژی الکتریکی حاصل از سیستم تا حد ممکن کاهش یابد. به همین ترتیب ، هزینه ساخت مبدلها نیز باید پایین نگاه داشته شود تا گران بودن این فناوری مانع از تولید انبوه خودرو نشود. دومین مشکل مهم در این زمینه میزان خلوص هیدروژن تولید شده از مبدلها است. آلاینده‌هایی همچون مونوکسید کربن (و در بعضی از انواع سوخت ، سولفیدها) از محصولات فرعی فرآیند تبدیل هستند. در این میان ، مقدار زیاد مونوکسید کربن می‌تواند موجب سمی شدن کاتالیست پیل سوختی شود. از این رو لازم است قبل از ورود سوخت به درون پیل سوختی ، مونوکسید کربن آن حذف شود. اگر چه انواع مختلفی از مبدلهای سوخت وجود دارند که اغلب از ترکیب فناوریهای مختلف حاصل گردیده‌اند، اما انواع اصلی مبدلهایی که در زمینه متداول هستند عبارتند از:

  1. مبدلهای با سیستم بخار (Steam Reformer)
  2. مبدلهای اکسیداسیون جزئی (Partial Oxidation Reformer)
  3. مبدلهای اتو ترمال (Auto thermal Reformer)

اصول اولیه عملکرد هر یک از این فناوریها و فرآیندهای شیمیایی مربوط به آنها بطور مجزا به قرار ذیل می‌باشد:

مبدل با سیستم بخار

فرآیند تبدیل به کمک بخار یک فرآیند دو مرحله‌ای به صورت زیر است: در واکنش اول از اکسیژن موجود در بخار آب داغ (معمولا بیش از 500 درجه سانتیگراد) برای جدا سازی کربن از هیدروژن و تولید مولکولهای هیدروژن و اکسیدهای کربن استفاده می‌شود. همزمان با این واکنش (بسته به دمای بخار) ، در واکنش دوم مونوکسید کربن به دی اکسید کربن تبدیل شده و بدین ترتیب هیدروژن بیشتری آزاد می‌شود. مرحله تصفیه گاز خروجی از مبدل سیستم بخار بسیار اهمیت دارد، چرا که معمولا گاز خروجی از مبدلها خالص و عاری از مواد زائد نبوده و نمی‌توان آن را مستقیما به عنوان سوخت به درون پیل سوختی فرستاد. این ناخالصیها عبارتند از:

مونوکسید کربن و دی اکسید کربن ناشی از واکنشهای درون مبدل ، باقیمانده سوخت (مانند متانول یا بنزین) ، اکسیدهای نیتروژن ، اکسیدهای سولفور ، و ترکیبات آلی فرار که همه این ناخالصیها در حقیقت از سوخت اولیه ناشی می‌شوند. از این رو ضروری است که جدا سازی این ناخالصیها از گاز خروجی نهایی مبدل ، صورت پذیرد. بویژه در مورد جدا سازی مونوکسید کربن که سطح استاندارد برای پیلهای سوختی که در دمای پایین کار می‌کنند، کمتر از 10 ppm در نظر گرفته شده است تا بدین ترتیب از سمی شدن کاتالیست موجود در پیل سوختی بخصوص پیل سوختی پلیمری جلوگیری به عمل آید. یک پیل سوختی جهت تولید انرژی با بازدهی بهینه ، نیاز به تغذیه مداوم سوخت و اکسید کننده ، خروج آب تولیدی از واکنش الکتروشیمیایی درون پیل ، مرطوب نگهداری غشاء توسط مرطوب نگه داشتن گازهای ورودی ، کنترل درجه حرارت و فشار دارد. تجهیزات و امکانات جانبی که این شرایط بهینه را برای پیل سوختی فراهم می‌آورند، سیستم پیل سوختی نام دارند.

یک سیستم پیل سوختی را بطور کلی می‌توان به اجزای اصلی زیر تقسیم کرد:

  1. سیستم سوخت رسان که شامل مبدل سوخت و یا سیستم ذخیره هیدروژن می‌باشد.
  2. سیستم تأمین هوا یا اکسید کننده که اکسیژن مورد نیاز پیل سوختی را فراهم می آورد.
  3. سیستم مدیریت آب و حرارت که شامل سیستم مرطوب کننده گازهای ورودی ، سیستم خنک کننده ، سیستم و یا شیرهای کنترل فشار و نماگرها است.
  4. الکترونیک – قدرت (Power Electronic) که مربوط به فصل مشترک بین پیل سوختی و مصرف کننده برق جهت تبدیل جریان و ولتاژ برق به ولتاژ و جریان مناسب می باشد.
  5. سیستم کنترل الکترونیکی که کنترل دما ، فشار ، برق خروجی از پیل ، شارژ باتریهای ذخیره ، هماهنگی بین سیستم سوخت رسان و پیل سوختی و بخش Power Electronic را بر عهده دارد.

    هر یک از این سیستمها می‌توانند بر عملکرد یکدیگر و بر سری پیل سوختی تأثیر متقابل داشته باشند. همچنین متناسب با نوع پیل سوختی و کاربرد آن ، این سیستمها می‌توانند متفاوت باشند که در اینجا بطور مشروح به بررسی هر یک از آنها خواهیم پرداخت.

پیل‎‎‎‎‎‎‎‎‎های سوختی فن‎آوری جدیدی برای تولید انرژی هستند که بدون ایجاد آلودگی‎های زیست محیطی و صوتی ، از ترکیب مستقیم بین سوخت و اکسیدکننده ، انرژی الکتریکی با بازدهی بالا تولید می‎‎‎‎کنند. تولید مستقیم الکتریسیته جایگزینی برای چرخة کارنو جهت تبدیل انرژی شیمیایی حاصل از سوخت به انرژی گرمایی و مکانیکی و در نهایت الکتریسیته می‎‎باشد که اتلاف انرژی را به حداقل ممکن می‎رساند و به بازدة تئوری دست پیدا می‎کنیم. در پیل‎های سوختی اکسید جامد (سرامیکی) اکسید سرامیک، رسانای یون در الکترولیت است و از اهمیت بسزایی برخوردار است. این پیل در دمای بین ۶۰۰ تا ۱۰۰۰ درجه سانتیگراد کار می‎کند و با بازده در حدود ۶۰ درصد، توان الکتریکی معادل ۱۰۰ مگاوات دارد. در حال حاضر تعداد زیادی از محققان روی جنبه‎های مختلف پیل سوختی اکسید جامد، جهت بهبود خواص پیل کار می‎کنند. برای این کار روی خواص الکترودها و الکترولیت که مهم‌ترین قسمت‎های پیل SOFC می‎باشند را بهینه سازی می‎کنند و روی عناصر و مواد تشکیل دهنده آنها مطالعه انجام می‎دهند.

تاریخچه پیل‎های سوختی

تاریخچه این پیل‎ها به دو دوره متمایز تقسیم می‎شود : دوره اول که حدود صد سال طول کشید ، از سال ۱۸۳۹ با ساخت اولین پیل سوختی با الکترولیت اسید سولفوریک توسط آقای گرو آغاز گردید. با تلاش دانشمندان بزرگی مانند جکس، هابر، مون و همکاران و شاگردان آنها منجر به درک علمی از پیل سوختی وشنا‎‎‎‎‎‎خت تنگناهای این فن‎آوری تا سال ۱۹۴۰ گردید.

دوره دوم از سال ۱۹۴۰ آغاز می‎شود که بین سالهای ۱۹۵۰ تا ۱۹۶۰ نمونه‎های تحقیقاتی متعددی از پیل‎های سوختی توسط شرکت‎های بزرگی مانند جنرال الکتریک با ظرفیت۰۲/۰ وات الی ۱۵ وات ساخته شد. اما هنوز این ظرفیت برای کاربردهای فنی و صنعتی مورد نظر، کافی و قابل قبول نبود. تا اینکه درسال ۱۹۶۵ یک واحد پیل سوختی با ظرفیت یک کیلو‎‎‎وات توسط شرکت جنرال الکتریک به منظور استفاده در ماهواره گمینی۵ ،ساخته شد و توجه دانشمندان را به خود جلب نمود. این پیل سوختی با ولتاژ ۲۵ ولت و شدت جریان خروجیA ۴۰ آمپر توانست در طول ۷ پرتاب ماهوارة گمینی ۵، انرژی برابر با ۵۱۹ کیلووات ساعت طی بیش از ۸۴۰ ساعت پرواز را تامین کند. بدین ترتیب معلوم گردید که پیل‎های سوختی می‎توانند برای بسیاری از مقاصد هوا - فضا مناسب بوده و انرژی مورد نیاز آنها را به صورت پیوسته و پایدار تامین کنند. این امر موجب گردید تا در سراسر جهان روی توسعة دانش فنی و تکنولوژی ساخت پیل‎های سوختی سرمایه‎‎گذاری‎های بزرگی صورت گیرد. امروزه نیز تحقیقات وسیعی در جهت ارتقاء ظرفیت ، کاهش هزینه‎های ساخت و بهره ‎‎بر‎داری و توسعة ویژگی‎های کاربردی پیل‎های سوختی در جریان می‎باشد. برق خروجی از پیل‎های سوختی جریان مستقیم (DC) است. بنابراین برای مصرف ‎‎کننده‎های جریان متناوب از مبدل‎های DC به AC استفاده می‎کنند. از پیل‎های سوختی می‎توان برای تامین انرژی الکتریکی مورد نیاز در مناطقی که دور از شبکه‎های سراسری انتقال و توزیع برق هستند و نیز در ایستگاه‎های ماهواره‎ای و مخابراتی وغیره نیز به طور رضایت بخشی استفاده نمود .

 

انواع پیل سوختی

پيلهای سوختی در انواع زير موجود می‎باشند: پیل‎های سوختی براساس نوع الکترولیت استفاده شده در آن‎ها به پنج نوع اصلی طبقه بندی می‎شوند.

  • پیل سوختی الکترولیت پلیمر یا غشاء مبادله کننده پروتون (PEFC)
  • پیل سوختی قلیایی (AFC)
  • پیل سوختی اسید فسفریک (PAFC)
  • پیل سوختی کربنات مذاب (MCFC)
  • پیل سوختی اکسید جامد (SOFC)

لازم به ذکر است که پیل سوختی متانول مستقیم (DMFC)۶ از خانوادة پیل سوختی PEFC است. پیل‎های سوختی بر اساس دمای عملکرد ، دارای دامنة دمایی از ۸۰ برای (PEFC‎) تا ۱۰۰۰ برای (SOFC) می‎باشند. پیل‎های سوختی دمای پایین (PEFC ،PAFC ،AFC) دارای حامل‎های یونیH+ ویا OH- هستند که انتقال یون از میان الکترولیت وانتقال الکترون‎ها از طریق مدار خارجی را به عهده دارند ، و در پیل‎های سوختی دمای بالا مانند الکترولیت کربنات مذاب (MCFC) و الکترولیت اکسید جامد (SOFC) ، جریان الکتریکی به ترتیب از طریق یون‎هایCO۳۲- و O۲- انتقال می‎یابد. در پیل‎های سوختی اکسید جامد (SOFC) یا سرامیکی رسانش ‎یون در الکترولیت معمولاً در دمای بین ۶۰۰ تا ۱۰۰۰ درجه سانتیگراد انجام می‎شود.

مزایای پیل‎های سوختی :

  • بازده بالا
  • سازگاری با محیط زیست
  • سادگی سیستم از نظر تعمیر ونگهداری
  • تنوع در سوخت مصرفی
  • عدم آلودگی صوتی به سبب نداشتن قسمت‌های متحرک
  • طراحی و ساخت توان‎های کوچک (میلی وات ) تا بزرگ (مگاوات)
  • امكان استفاده از سوختهاي فسيلی و پاك، مدولار بودن
  • قابليت توليد هم‌زمان حرارت و الكتريسيته و استفاده در كاربردهای توليد غيرمتمركز انرژی

معایب

  • به مواد بیشتر و فرآیندهای سریعتری نسبت به دیگر پیل‎ها نیاز دارد.
  • ممکن است در مدت طولانی کار ، گرما مشکلاتی چون ناسازگاری عناصر و افت انرژی را موجب شود.
  • در صورت استفاده از سوخت ناخالص ، کار و گرمای بیش از حد موجب رسوب کربن و در ‎‎‎‎نهایت مسمومیت پیل می‎گردد.

مزایای پیل سوختی اکسید جامد

  • به علت عملکرد دمایی بالا دارای بیشترین راندمان نسبت به سایر پیل‎های سوختی می‎باشد.
  • از گرمای تولید شده می‎توان برای افزایش بازدهی مجدد استفاده نمود.
  • امکان بازسازی درونی سوخت به خاطر عملکرد دمایی بالا وجود دارد.
  • نیازی به کاتالیستهای گران قیمت ندارد.
  • برای استفاده از سوختهای مختلف نیازی به مبدل‎های سوخت نیست.
  • از آنجاییکه پیل سوختی اکسید جامد دارای الکترولیت جامد است مشکل خوردگی مواد کم می‎باشد .
  • برای ساخت اجزای پیل می‎توان از فن‎آوری لایه نازک استفاده نمود. ولی در پیل‎های سوختی با الکترولیت مایع چنین امری دست نیافتنی است.

پیل سوختی اساساً وسیله ایست که سوخت (مانند هیدروژن، متانول، گاز طبیعی، بنزین و...) و اکسیدان (مانند هوا و اکسیژن) را به برق، آب و حرارت تبدیل می‌کند. به عبارت دیگر پیل سوختی شبیه یک باطری بوده ولی بر خلاف باطری نیاز به انبارش (شارژ) ندارد. تا زمانی که سوخت و هوای مورد نیاز پیل تأمین شود، سیستم کار خواهد کرد. پیل‌های سوختی میتوانند سوخت‌های حاوی هیدروژن مانند متانول( Methanol ) ، اتانول ( Ethanol) ، گاز طبیعی ( Natural Gas ) و حتی بنزین و گازوئیل را مورد استفاده قرار دهند. بطورکلی در سوخت‌های هیدروکربوری، هیدروژن توسط یک دستگاه اصلاحگر سوخت (Fuel Reformer)، از آنها جدا شده و بکار گرفته می‌شود. پیل‌های سوختی در کاهش آلودگی محیط زیست نقش بسزائی داشته و بخاطر عدم بکارگیری قطعات مکانیکی زیاد، ایجاد آلودگی صوتی نیز نمی‌نماید. علاوه بر آن سیستم پیل سوختی از کارائی نسبتاً بالائی نسبت به موتورهای احتراق درونسوز برخوردار است. بحران انرژی در سالهای ۱۹۷۳ و ۱۹۹۱ و آلودگی فزاینده محیط زیست،کشورهای صنعتی را بر آن داشت تا جهت استفاده از سیستم‌هایی با راندمان بالا و سازگار با محیط زیست سرمایه گذاری کلانی نمایند. سیستم‌های پیل سوختی از جمله تکنولوژی های پیشرفته ایست که مصارف غیر نظامی آن با توانهای میلی وات تا مگا وات موضوع تحقیق شرکتهای تولید نیرو، خودرو سازی و نیز شرکتهای نفتی قرار گرفته‌است. پیل سوختی مجموعه‌ای از الکترولیت ، الکترودها و صفحات دو قطبی است. در پیل سوختی (به‌عنوان مثال نوع الکترولیت پلیمر جامد)، هیدروژن از آند و اکسیژن از کاتد وارد می‌شوند. هیدروژن الکترون خودرا در آند از دست داده و بصورت پروتون از طریق الکترولیت به سمت کاتد حرکت می‌کند. الکترون نیز از طریق مدار خارجی به سوی کاتد هدایت می‌شود. اکسیژن با دریافت الکترون و پروتون به آب تبدیل می‌شود. حرکت الکترون از آند به کاتد جریان برق را به وجود می‌آورد که قابل استفاده در وسایل برقی است آب حاصل در کاتد میتواند مورد استفاده مجدد قرار گیرد.

 

نظرات